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ABSTRACT

Wireless networking is the branch of communicafiomvhich wireless channels are used for the trassiom of
the signals. There are various terminologies infiblel of wireless networking which are taken foguantum physics.
In fact quantum physics consists of the signalschvlaire in wireless medium. There are many impottatries which are
given in the field of quantum mechanics which cenrélated with the concepts of wireless networksn& of them are
directly or indirectly related to wireless networkishere is always a possibility of an error in thaundary conditions
which can be found out by the mean of Random sigmalysis. Also the major problem in the communicatand

wireless network is probability error. Many thesrire provided to reduce this error.
KEYWORDS: Momentum, Wavelets, Duality, Uncertainty
1. INTRODUCTION

Quantum Physics is the branch of science whichlhigkals with the electrons and other subatomicigiar
behaving as in the wave nature. Generally, scisntiave two views that electron and other subatgraiticles has two
nature either wave or particle. Several theoriesepeesented by the scientists to prove that e@edllows wave nature.
Generally in the field of wireless networking, wawvare used for the transmission of the signal. Wéees which are used

can be compared to the electron and the other teuhi@particle waves as generated by the wave eatuality.

In the similar way various theories are implemeritethe field of quantum physics can be implemeritethe
field of wireless network. In this paper we haviedrto implement the use of the Schrodinger Priacip the field of
wireless networking. The paper includes the eriagmbsis of probability in finite potential well el using random
signal analysis. The paper also includes the cdadbp probability in which the normal distributiohprobability is used
for signal analysis. Probability of the energy dgns studied between the nodes by considering<ad boundary
condition. Error in the probability will be derivday considering the Heisenberg and SchrodingertegquaNormally in
normal form of distribution, the step deviation fehich a constant probability occurs but genertibre is an error in the

probability which can be linked to the error in fasition, velocity or momentum of the particle.

Heisenberg’s uncertainty principle is a specialecaad it refers to wave packets with Gaussian iligton.
The cases of Schrddinger equations which include ehergy quantization, boundary conditions are rtalkem [1].

The proof of the strong inequality was given by Kard and Weyl [2]. Later Robertson [3] generaligtieel correlation for
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arbitrary observables andB 1, and Dichburn [4] presented the relation betwidersenberg’s fluctuations. Generalized
and précised form of Heisenberg’s principle wa®gity Schrodinger [5, 6] and Robertson [7]. Ther&dimger's relation
[3] can be expressed in a compact [6] and “vergaie form” through [9]. Ref. [8] explains about tr@e of noise in
increasing the error. Ref [10] gives the informatabout the classical cases of quantum analogy imsedndbooks on
experimental physics. Ref. [11] gives the informatregarding the matrix analogy for quantum physidsfinition of
guantum mechanics is taken from [12]. There aredases of Schrddinger equation as time indeperadehbther as time

independent, we take ref. [13] in which the probghidlistribution of both the cases are studied

The remainder of the paper is described in thefatg ways: Section Il gives the brief introducticegarding
the related work. In the section Ill, approximatiarthe error in probability with respect to eneayyd position is defined
and derived by considering the finite potential wehve equations of Schrodinger wave equation. Asme further

research and problems are explained in sectioRkihally conclusion is in section V.
2. RELATED THEORIES

» Schrédinger Wave Equation

In the quantum mechanics, electron is charactenviéd a three dimensional wave functign This is a wave
equation popularly known as Schrodinger Wave Equativhich is based on the equations based on theeals of

Newton’s classical mechanics and wave- particldityua

8m?m

Vi +——=(E - V)y =0

HereV? is the del operator (laplacian operator).

V2 = 9?2 +az 9?2

T ax2 | 9y 922

Here E is the total energy of the system and Yéspotential energy of the system.

However, there are two conditions which satisfy Sitdrédinger wave equations, one which followshibendary

conditions and the other are the scattering canmti
» Boundary Conditions

In the case of Boundary conditions, bondage isigeml/over the potential energy of the signal, ags fixed
boundary the probability of the energy densityésozand the there is an increase in the probalztyhe radius of the
fixed boundary decreases. Therefore if we havenglesiparticle of masm confined to within a region & x < L with

potential energy = 0 bounded by infinitely high potential barries, the potential experienced by the particldent
VxX)=00<x<L
=wox>2L,x<0

In the regions for which the potential is infinitag wave function will be zero, that is, theredéso probability of

the particle being found in these regions. Thuspwst impose the boundary conditions

v(0) = y(L) = 0.
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e Scattering over Potential Barrier

It has been derived that energy waves has the negpde lose their energy while travelling from onede to
another but time required for losing their completergy is infinite. Though after a certain limitdistance the energy can
be compared to a nil but it usually has exponemntgrement pattern. Actually when there is a cotimedetween two
nodes then there is probability difference and speetive energy gap present so that the electroe \wathe form of
signal move from one node to another. Thereforeavesay that there is a particular threshold veltager a certain point
(here x=0) which has been compared with the sigoltéhge and if the signal voltage is less, thenahergy signal will be

reverse its direction from x=0. Voltage distributtiof scattering condition is given below
Vix)=0x<0
=Vx>0
By studying the voltage distribution, probabilitistlibution will be
w(x) » 0asx - tw©

Extending the concepts of Heisenberg Uncertainigciple there is a chance of having an uncertaintyhe
presence of connection between two nodes. As disduthe connection between two nodes depends @nérgy density
of the signals present between these signals. fitnege of this probability is dependent on the valu&aE as the value of
p is related with that of energy gradient. The ffutalue which is required for the connection betweahe two nodes is
shown below:

Ap.AE = c'

Here ¢’ is a constant whose value can be calcufarad the practical experiments.

Consider the case of standing wave generation & dimension in which there are two nodes which are
connected through a string. When an oscillatiopraszided to this system it has the tendency to gg#ee standing wave
at the ends of the nodes (starting and ending paditiis example can be compared with the three dé@al wireless
network where if two nodes are connected to ealsrahen they will have wavelets having oscillai@iong their path
which generates travelling waves at the connegiat of both the nodes but at these ends theréoisration of standing
waves. According to the property of standing wavksre is no interference among the signals. Ttiis as a plus point
for the wireless networks as this leads to no comsmection of the signals within the nodes (tighie basic concept

which is generally used for zero interference witthie wavelets).
Considering the following case, the potential eigrered by the particle in finite potential well is
Vix)=00<x<L
=Vx=>L,x<0
Now to solve the time independent Schrédinger waawgation for the following range of potentials,

VW) +(E ~ V)p(x) = 02 < 0

h? |\ A
-V Y(X) +Ey(x) =0;0 < x <L
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h2 2 - 0N
EV Y(X) +(E-=V)p(x)=0;x =0
In order to get second order differential equation

We assume V>E,

8m2mE 8n2m(V-E
@ = B = ’ ( )
h2 h2

Herex andg are real numbers. Now the equations can be wrtten

V2¥P(x)— a?p(x) =0x <0

V2Y(X)+ B2y (x) =00 < x < L

VZ¥(X)— a?p(x) =0x = L

Considering the first equation, the solutions ie #guation be
y(x) = Ae™ ™ + Be™*

Here A and B are unknown constants. At this poiatoan use the boundary conditions as wherwo, y(x)tends

to 0. Sincex < 0 the value ofy(x) at x=-c. It will diverge the system, to avoid this A=0.é&rkefore we have
y(x) =Be™®x <0
Similarly take the second case whére x < L therefore take the general solution for this eiguat
y(x) = Pcos(Mx) + Qsin(Mx)

Consider the third case> 0, in this case we have the same condition as i@ cas as when — o, y(x)tends to

0. Therefore the solution for this equation
y(x) =Ce™x =1L

Now according to the property that the wave whickuss should be continuous in nature, thereforethinee

equations should be continuous at all their remevdiscontinuity.
Therefore, on analyzing on | equation and Il equetie get
B=P
x.B=p.Q
On analyzing the value of Il and Il at x=L, by f@ifentiating the equation.
Ce™® = Pcos(B.L) + Qsin(B.L)
On differentiating
-aCe™® = —B.Psin(B.L) + B.Qcos(B.L)

Converting this equation to the matrix form
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(acoscp.1r Lpane.)) ()
acos(B.L) — Bsin (B.L) acos(B.L) + Bsin (B.L)/ \e

The above matrix is equalized to zero. To get atnigial solution of the above equation, the moduhf the

(2x2) matrix should be zero. On equalizing and simpid we get:

Be**,x <0
y(x) = B(cosfx + %sinﬁx), 0<x<L

Bea(®x-L) x >,

On observing the value a@f(x) fromx < 0 andx > L, it is found that the value is delayedeBY. Therefore the
value of change in probability for first case viik proportional to last case and the proportionalinstant will bee%: to

find the value of constant B, we use the followihgorem.
2 ve)Pdx = 1
Therefore, applying the above equation:
|B|? [f_om e?%dx + fOL(cosﬁx + %sinﬁx)zdx + fLOO e 2ex-Lgx] =1

By calculations we get

_B a
— 5 |aL
Bo S+l
8m2my
Where B, = —

By solving the above equation we have

Pout = |BI[[", ™ dx + [, e 27 Vdx] = |B|2a~

As discussed above we will consider the changeabability due to the outer potential wall.
Be**,x <0

y(x) =1 Be=®@-L) x > [,

Now consider the normal distribution of the prollipthen the probability function will be as follng:

X—X0

l//(x)env = \/Px = \/er_w

X—X0
X

Be®™ =+A,e *ox?
On comparing the values of both the functions, efetlge following result:

B=+A4,

X—=X0

ax — o aox?

e

Taking natural log on both sides
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Xo—X
ax = 2
40y

2 _ Xo 1

40,2 =22 ——

ax a

Now differentiating this equation with respect taherefore

X,
80,.Ac, = —a—;)z.Ax

This relation describes the relation between tap deviation error and error in distance. The i@tdbetween the

error in position and error in probability is aldescribed below.
P =|B|?a™?
AP =0

It is independent of x therefore change in proligbivith respect to change in x is 0. Also the afarin
probability with respect to change ixv, is also nil. SincaAP = 0, relations which are developed by the Heisenberg

principle are satisfied with a zero condition as
AP =d.Ax
Ax.Ap = c/4n
Ax.Av = c/4mm
On modifying the equations we have,
AP.Ap > c.d/4m
AP.Av = c.d/4mm

Since\P = 0, d=0; the above conditions are valid for zero geaim probability. The probability will be constant

for the changes in the value of position, momentum.

Also individual probabilities of both outer sectiofithe finite potential well are independent oftixerefore the
individual probability error are also nil. Due toig the change in momentum or change in positienrizaeffect over the

change of probability.
APPICATION

This area where the value of probability errorilscan be used for the communication field, wirsle®tworks
etc. As probability error is nil, this area is radtected by the change in position of energy padRetbability error is a

serious issue in communication networks which aasdived by the use of this area for communicditid.

CONCLUSIONS

The paper consist a brief introduction about th®rein the probability conditions in the finite gottial well
boundary conditions of Schrodinger equation. Framm given equations, probability is derived andsitciear that the
probability error in the region x<0 and x>L is zefdue to which probability error won't be changed &ny change in

position, momentum.
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